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LECTURE 16: SIMPLE LINEAR REGRESSION II 
 

I. On Causation and Evaluation. 

a. Let’s revisit our regression from last class. 

b. Here is the graph with DIFFICULTY causing QUALITY: 

 

 
 

i. I made this with the Add Trendline… option found after you 

right-click the data on a scatter plot. By opting to Display 

Equation, it will show you the line’s equation. 

ii. Note (a) it’s in a slightly different format (y=mx+b) and (b) it 

doesn’t give you statistical significance. It’s better to use Data 

Analysis to run the regression but this option is useful for 

visualization purposes. 



 

c. Interestingly, we could use this to evaluate professors. A good professor 

gets high ratings while being difficult. (Employers don’t simply want 

“A” students. They want “A” 

students who had to work 

really hard for the grade.)  

i. Professors above the 

line having a higher 

quality than you’d 

expect given their 

difficulty rating.  

ii. Professors below the 

line have a lower quality 

than you’d expect given 

their difficulty rating. 

iii. The professor 

highlighted with the 

orange circle has a good quality rating (4.2) but when you 

consider how hard s/he is (difficulty is 3.8), it’s much more 

impressive. You’d expect the quality rating to be only about 2.9 

with a course that difficult. Despite being hard, the students like 

the professor. That difference is the error term, ε, mentioned 

earlier.  

iv. The professor 

highlighted with the 

green circle seems to be 

pretty good (quality of 

3.7) but with a difficulty 

of 1.8, you’d expect a 

rating of about 4.7. The 

quality rating is quite 

low for how difficulty 

the professor is. Again, 

that difference is the 

error term, ε, mentioned 

earlier. 
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d. Consider QUALITY causing DIFFICULTY: 

 
i. The professor with a QUALITY of 2.4 and DIFFICULTY of 4.4 

is right on the predicted line in the first graph. But reversing the 

causation moves that professor above the line. S/he is not average 

any more. 

 
 



e. Why does it change? Linear regressions minimize the summed and 

squared vertical distance. What’s set as the y variable and what’s set as 

the x variable determines the line. Swapping the two variables results 

in a fundamentally different line. 

II. Assumptions of a Linear Regression 

a. For purposes of this class, we will assume these assumptions hold for 

the regressions we run but you should be aware that they may not 

actually be true for a particular data set. 

b. The regression is linear. In other words as the independent variable 

increases, the other dependent variable increases or decreases. The 

dependent variable: 

i. Sometimes increases and sometimes decreases. Like this: 

 
ii. Increases or decreases at a variable rate. Like this: 

 
iii. In other words, it should make sense that slope is constant. 

c. The residuals follow a normal distribution.  

i. If you plot all the residuals in a histogram, you should get 

something that looks like a normal distribution. 

ii. Note the connection between this and the CLT: the Central Limit 

Theorem notes that, by chance, many residuals will be close to 

zero and a few will be very low (large negative) or very high 

(large positive). 



d. The residuals are independent of one another (no autocorrelation). 

If you plot the residuals in data order, it should look like a random 

scattering around zero. If there is a pattern, you have “autocorrelation.” 

i. Broadly speaking, autocorrelation is when a variable is 

correlated with itself.1 

ii. Autocorrelation is a particular concern in a time series, when the 

order of the data matters. But it doesn’t have to occur in a time 

series—in a cross-sectional data, order can still matter. 

iii. Here’s a nice example of autocorrelation in cross-sectional data. 

e. There is no multicollinearity. We’ll talk about this later. 

f. There is homoscedasticity; this requires some explanation. 

III. Homoscedasticity 

a. Homoscedasticity is that the variance (or the deviation) from the 

regression line is the same, regardless the value of the independent 

variable(s). 

b. When we lack homoscedasticity we have heteroscedasticity, or the 

variance is not the same for all values of our independent variable. 

i. Heteroscedasticity can show up in different ways. Here we see 

how variance increases as income increases. But if variance 

decreased, or increased and then decreased, or decreased and 

then increased, etc. we’d still have a problem. 

 
c. The simplest way to detect heteroscedasticity is to make a scatter plot 

and add a regression line. This visualization test is intuitive (but not 

precise). 

 
1 Autocorrelation occurs outside of regressions. As the linked article shows, the famous Dunning-Kruger effect (that 

the less-skilled tend to be more confident in their ability) is a myth—its statistical evidence is just autocorrelation. 

https://blog.minitab.com/en/the-statistics-game/snakes-alcohol-and-checking-the-residuals-vs-order-plot-in-regression
https://economicsfromthetopdown.com/2022/04/08/the-dunning-kruger-effect-is-autocorrelation/

