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LECTURE 05: LAW OF LARGE NUMBERS AND CENTRAL TENDENCY 

 
I. Law of Large Numbers 

a. One of the basic rules of statistics is the law of large numbers, or as 

the number of observations increases, the empirical average tends to 

approach the theoretical average. 

b. Example: Coin flipping 

i. The theoretical probability of getting “heads” on a coin flip is 

0.50.  

ii. If you flip a coin once, you’ll get either heads or tails. That 

means the empirical probability of getting “heads” is either 1.00 

or 0.00. That’s way off! 

iii. Let’s flip it twice. Here are the possible results: 

 

Result Chance of Heads  Result Chance of Heads 

HH 1.00  TH 0.50 

HT 0.50  TT 0.00 

 

iv. Now you have a 50% chance of getting the theoretical result 

and a 50% of getting an extreme result. 

v. Let’s flip it four total times. Here are the possible results: 

 

Result Chance of Heads  Result Chance of Heads 

HHHH 1.00  HTTH 0.50 

HHHT 0.75  THTH 0.50 

HHTH 0.75  TTHH 0.50 

HTHH 0.75  TTTH 0.25 

THHH 0.75  TTHT 0.25 

HHTT 0.50  THTT 0.25 

HTHT 0.50  HTTT 0.25 

THHT 0.50  TTTT 0.00 

 

vi. You may only have a 37.5% chance of getting the theoretical 

result, but you have only a 12.5% chance of getting one of the 

extreme results. With the mid-range results each at 25%, the 

theoretical result is the most likely result to get. 



vii. And if you flipped the coin ten times… 

 

 
c. A related idea to this is regression to the mean. Regression to the 

mean refers to particular observations and how if it is unusual in some 

way, the next randomly selected observation is likely to be less 

extreme.  

i. This is sort of a micro-level version of the law of large 

numbers. Why does the empirical average approach the 

theoretical average? Because if the first observation is weird 

and the second observation is likely less weird, the average of 

the two will be closer to the population average. 

ii. Note this is a tendency. It does not mean that the next 

observation will definitely be less extreme, just like the law of 

large numbers says increasing observations definitely will bring 

the empirical average closer to the theoretical average. 

d. For example, suppose you had a jar of 10 squares of paper. On 8 eight 

squares was the number 100. One 1 square was the number 0. On the 

last square was the number 200. Note on average, the value you 

should get is 100. 

i. Suppose you draw a square of paper and it’s 200. You record it 

and replace the square. 

ii. Now you draw another square of paper. What’s the chance that 

it’s 200 again? 10 percent. What’s the chance that it’s less than 

200? 90 percent.  



iii. Precisely because the 200-valued square is so unusual, it is 

unlikely to happen again. Strange values (either very small or 

very large) happen because of unusual circumstances and, 

therefore, they are unlikely to be repeated. 

iv. Note that this means the average from the first pull was 200. 

One observation at 200. The average from the second pull is 

likely to be less. Suppose it’s 100. That means the average of 

two pulls is 150. We’re getting closer to the theoretical mean of 

100. 

v. As we pull more and more squares, pulling the unusual values 

(both high and low ones) will continue to be unlikely and we 

will arrive at the theoretical average. 

II. Gambler’s Fallacy 

a. It’s tempting to be fooled by the law of large numbers. If black comes 

up ten times in a row on a roulette wheel, people think that red must 

be “due.” The thinking is that it must be more likely to come up in 

order to balance out the previous streak. Otherwise, how could we say 

increasing the sample size brings the sample mean closer to the 

theoretical mean? 

i. This is called the gambler’s fallacy—believing under-

represented results will be more likely to occur in future 

independent trials. 

b. But look at our bar graph of ten coin flips: we get ten heads (or ten 

tails) 0.10% of the time. In other words, it’s possible that a streak can 

continue. 

c. The law of large numbers doesn’t render independent trials dependent. 

The roulette wheel has the same chance of getting black if black came 

up ten times in a row or red came up ten times in a row. 

d. On August 18, 1913, black came up twenty-six times in a row at the 

Monte Carlo casino. People bet (and lost) millions on the idea that red 

“was due” for a streak. But any particular sequence of red and black is 

just as likely as all black. 

e. Note the gambler’s fallacy does not apply to dependent events, such 

as card-counting.  

III. Hot Hand Fallacy 

a. People sometimes succumb to the opposite of the gambler’s fallacy, 

called the hot hand fallacy—believing over-represented results 

(particularly successes) will be more likely to occur in future 

independent trials. 



b. Success now does not mean success later. Just because a basketball 

player made three shots in a row does not mean they are suddenly 

more likely to make a fourth shot. 

i. This fallacy is a bit harder to detect when it comes up in games 

based at least partly on skill.  

c. Most (but not all) of the evidence analyzing basketball players’ 

success at shooting suggests the result for any given shot (for a 

particular player) is random. 

i. These studies tend to focus on free-throws, where you can 

remove complexities like where the shot was taken from or 

what the other team is doing. 

d. If you’re doing well at craps, that doesn’t mean your next roll of the 

dice will be successful. 

e. If the slot machine you’re using pays out, that doesn’t mean it will 

continue to pay out. 

f. Just because a stock is doing well now doesn’t mean it will continue 

to do well. 

i. The day-to-day and hour-to-hour movement of a particular 

stock is essentially random. At any particular price, it has an 

equal chance of going up and of going down. 

IV. Data Descriptions 

a. When examining data, one of your first steps should be to familiarize 

yourself with its statistics. First among these statistics is the data’s 

central tendency—a single value which describes the center point of 

the data set. It can be described in three different ways: mean, median, 

and mode. But all three of them have issues. 

b. Mode is the most common value. It’s often used for data organized 

into discrete categories with few alternatives; this is also called 

categorical data. 

i. Problem: Difficulty with continuous variables (e.g. income, 

though you can transform that data into a range). 

ii. Problem: May also mask important changes (e.g. many poor 

people enter country). 

iii. Problem: There may be more than one mode. 

iv. The mode, it seems, is rarely used because it has so many 

problems. But in fact modes are used whenever you examine a 

pie chart or a bar graph.  

c. Mean (or the arithmetic mean) is the average. Sum all the values and 

divide by the number of observations. 



d. Median is the middle value. Half of the observations are below and 

half are above (if an even number of observations, take the mean of 

the two middle observations). 

V. Mean vs. median 

a. Thanks to outliers (unusually high or low observations), the mean and 

the median are good at different things. 

i. The median is best when you’re interested in what’s “typical.” 

For example, if you become a civil engineer the median gives 

you a good idea of what salary you’d make. 

ii. The mean is best when you’re interested in the “big picture” 

and you want to include outliers. For example, knowing mean 

bill for each table in a restaurant is much more helpful than 

knowing the median bills. You want to include the full effect of 

outliers to account for the occasional big spender. It gives you a 

better idea of how much money your restaurant is making. 

b. The median can be better because it treats outliers as the same as non-

outliers; observations are just high or low. Since you’re unlikely to be 

an outlier (by definition), having their influence reduce can sometimes 

be an advantage. 

i. For example, the average student loan debt in 2016 was 

$37,172.1 It’s so high because it includes graduate students like 

doctors and lawyers. While they’re a relatively small segment 

of the borrowing population, they take out huge amounts—

often over $100,000—and that throws off the average. Median 

student debt is much lower: $17,000 in 2016.2 

c. But precisely because the median treats a very high value and a 

somewhat high value as the same (both are in the upper half of 

distributions of observations), it can be deceptive. Sometimes you 

want the outliers. 

i. If wealthy people are getting wealthier but no one else is, 

median wealth wouldn’t change but mean wealth would 

increase. 

ii. You’d have a much better idea how your store is doing if you 

know the mean amount of money customers spend rather than 

knowing the median amount. 

iii. Most Americans don’t smoke; the median number of cigarettes 

per week is zero. You wouldn’t be able to distinguish this 

 
1 https://www.forbes.com/sites/zackfriedman/2018/06/13/student-loan-debt-statistics-2018/  
2 https://www.pewresearch.org/fact-tank/2017/08/24/5-facts-about-student-loans/ 

https://www.forbes.com/sites/zackfriedman/2018/06/13/student-loan-debt-statistics-2018/
https://www.pewresearch.org/fact-tank/2017/08/24/5-facts-about-student-loans/


society from one where literally no one smokes. But you could 

if you used the mean. 

d. In other words, including the value of outliers is both good and bad; it 

depends on what you’re interested in. 

VI. Example: Grades 

a. Below is a graph of all the grades I assigned in the spring of 2014. If 

we assign a value of “4” to each A, “3” to each B, etc, what is the 

mean, median, and mode of this data? 

 
b. The mode is an easy one: the most common value here is 3, or a B. 

c. The median is a little harder: since there are 140 grades here, the 70th 

grade (counting from the highest down or the lowest up) is 3, or a B. 

d. The mean takes a few steps: 

i. First, we must multiply the number in each grade by the value: 

1. 38 x 4 = 152 

2. 51 x 3 = 153 

3. 37 x 2 = 74 

4. 6 x 1 = 6 

5. 8 x 0 = 0 

ii. Second, we add them together: 152 + 153 + 74 + 6 + 0 = 385. 

iii. Third, we divide: 385 / 140 = 2.75 

e. Which central tendency is most useful here? Why do you think it 

turned out that way? 

VII. Example: U.S. Income 

a. The mean individual income in the United States in 2017 was 

$55,880. In contrast, the median individual income in the United 

States in 2017 was just $39,048. 3 

b. What’s a more useful way of determining the central tendency? It 

really depends on what you want. 

 
3 https://dqydj.com/income-percentile-calculator/ 

https://dqydj.com/income-percentile-calculator/


i. Median is better for describing what’s “typical.”  

ii. Mean is a better summary of the central tendency when each 

observations’ exact value is important, rather than just knowing 

what’s high or low. 


