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LECTURE 21: SIMPLE LINEAR REGRESSIONS I 
 

I. From Correlation to Regression 

a. Recall last class when we discussed two basic types of correlation 

(positive and negative). 

b. While it’s usually clear from a scatter plot if two variables are 

correlated (and in which direction they are correlated), we often want 

more than that. In a world of cost-benefit analysis, correlation is not 

enough. The level of influence is needed as well. 

c. This is why we do regressions: they let us know how much one variable 

influences another. 

i. These are the best estimate, an estimate because there will always 

be some things we cannot predict. At the very least, no sample is 

perfectly precise. 

d. It is thus important to remember that when you construct a regression, 

you are making a causal claim. You are claiming one thing (x) causes 

another thing (y). If x increases, y will change. Y cannot change without 

x changing; y cannot change independently. 

i. This is why we call y a dependent variable (it depends on x), and 

x an independent variable (changes to it happen independent of 

the model). 

ii. We also call the independent variable(s) the explanatory 

variable(s) because it explains what the dependent variable is. 

e. When choosing variables, be sure that your explanatory variable(s) 

logically matches with your dependent variable. Some common 

mistakes: 

i. One variable adjusts for population and other doesn’t (e.g. 

population density and total number of crimes). 

ii. Adjusting for population for a variable adjust when that doesn’t 

make sense either because: 

1. It already adjusts for population (e.g. percent of people in 

a country who are teenagers or average life expectancy)  

2. Population isn’t relevant (e.g. average rainfall or if a state 

voted for a Democrat or Republican in the last presidential 

election). 

iii. The same can be said for other adjustments, such as land area. 

 



II. Basics 

a. Least Squares Regression—line which minimizes the sum of squared 

deviations between the constructed line and the actual data points. 

i. It is also referred to as Ordinary Least Squares (OLS). 

ii. Here, we’re determining the line:  

 

HEIGHTi = β0 + β1*AGEi + εi 

 

The ε is the residual, the 

distance between what’s 

predicted and what’s 

observed. Sometimes it’s 

called the error term but that’s 

a bit deceiving. It’s not 

suggesting anyone did 

anything wrong. Still, many 

sources (including your book) 

refer to it as error so I mention 

that here to avoid future confusion. 

iii. The subscript, i, refers to a particular observation. For example, 

i=1 is the first observation, i=2 is the second, and so on. Note the 

order of observations doesn’t matter; it just for differentiating 

one observation from another. 

1. Note that i repeats for both variables. That’s because for 

any observation, we know that observation’s height and 

age. Repeating i means those values are for the same 

observation: the ith observation. 

iv. This line is determined by minimizing the sum of the squared 

vertical distance between the line and a data point. This is built 

to minimize this value (Residual Sum of Squares): 
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1. Where yi is a particular observation; 

2. yi-hat is the estimated value based on the regression line; 

and 

3. n is the sample size. 



v. Note this line is not a perfect fit. That’s because other factors 

influence height besides age such as genetics, diet, and exercise. 

These unmeasured factors are captured in εi. The i subscript 

means that ε changes from observation to observation. Its 

placement is for technical reasons, creating the connection 

between how much the y value should be and how much the y 

value is. 

b. β1 is the slope of the line. It tells us how much age matters to height. 

Suppose the line is HEIGHTi = 80 + 6*AGEi + εi.  

i. We can estimate that someone who is 8 years old is probably 80 

+ 6*8 = 128 cm tall.  

ii. For every year someone ages, they get 6 cm taller. 

III. Basic Regression 

a. Open Data Set 5; you’ll find data on Montgomery College professors 

from Rate My Professor. 

i. Like before, this data includes every MC professor with at least 

25 ratings, gathered in July 2014. We have data on their 

department, the number of ratings, the overall quality, the level 

of difficulty, and if users rate that professor “hot” or not. 

ii. There are 211 observations (professors). 

b. Suppose we want to tell a story that an easy professor will lead a student 

to rate that professor well on overall teaching. (Perhaps, because the 

professor is easy, students think they’ve learned a lot and thus rate the 

professor as quite skilled in pedagogy.) 

i. Thus our causal claim: Difficulty causes Quality. 

 

QUALITYi = β0 + β1*DIFFICULTYi + εi 

 

 

 

 

 



c. To run a regression in Excel, go to Data 

>>> Data Analysis >>> Regression. 

You’ll get a window that looks like this: 

 

 

 

 

 

 

 

 

 

 

 

 

i. A red letter means this option can 

be ignored for purposes of this 

class. 

d. I filled the box as so: 

 
 

A: Where the range for your dependent 

variable goes. 

B: Where the range for your explanatory 

variable goes. 

C: If you check this box, Excel will assume 

the first row of your data is the label for that 

column. It is useful to use this option, as 

we’ll see soon. 

D: Excel will output the confidence interval 

of your dependent variable’s coefficient, 

defaulting to 95% confidence. Check this 

box to change the confidence level.  

E: Check this box if you want to force the 

intercept (β0) to be zero. You won’t need 

this option for this class. 

F: As before, this how you tell Excel where 

you want the results. I usually select the first 

option and select an out-of-the-way cell. 

G: Excel can give you information on the 

residuals for each observation. 

H: Used to analyze the data to see how it 

deviates from a normal distribution. 
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e. And got this result: 

 
 

IV. Interpretation 

a. For now, focus only on the end of the regression (we’ll take about the 

rest of it later). 

 

 
 

b. For each variable in the regression (and it’s possible to have many, 

which we will discuss later), Excel will tell you the following: 

i. Coefficient—this is the beta-value for the variable; the slope. 

ii. Standard Error—this is the dispersion of the coefficients. If you 

draw multiple unbiased samples, this gives an idea of how much 

the coefficients would change. 

iii. t-statistic—ratio of the estimated coefficient to the standard error 

of the estimated coefficient (coefficient divided by error). 

iv. p-value—tells you the threshold of significance you achieve for 

a particular t-statistic. (Remember critical t values changes based 

on degrees of freedom.) If the p-value is below 0.05, it’s 

significant to the 5% (95% confidence) level. If below 0.01, it’s 

significant to the 1% level, etc. It’s basically the α. 

v. Confidence interval—describes the range that the true value of 

the parameter could fall with a certain level of certainty (usually 

95%). It outputs this result twice, the second one for whatever 

you customized Excel to do (e.g. 97% rather than 95%). 



c. The intercept is β0; it’s not really a variable and the t-stat other 

information doesn’t matter too much. But the coefficient does. That 

number (6.2112) is β0. Our estimated line is thus: 

 

QUALITYi = 6.2112 - 0.8625*DIFFICULTYi + εi 

 

i. Note as well this result is statistically significant. The t-stat is 

huge and p is functionally zero. 

d. Increasing DIFFICULTY by one point decreases QUALITY by 0.8625 

points. 

e. A professor with a DIFFCULTY of 3 is expected to have a QUALITY 

of about 3.624. 

i. If the professor is actually above or below that predicted value, 

you can infer that there is something special (good or bad) about 

his or her teaching. 


